HashTag Erasure Codes: From Theory to Practice
نویسندگان
چکیده
Minimum-Storage Regenerating (MSR) codes have emerged as a viable alternative to Reed-Solomon (RS) codes as they minimize the repair bandwidth while they are still optimal in terms of reliability and storage overhead. Although several MSR constructions exist, so far they have not been practically implemented mainly due to the big number of I/O operations. In this paper, we analyze high-rate MDS codes that are simultaneously optimized in terms of storage, reliability, I/O operations, and repair-bandwidth for single and multiple failures of the systematic nodes. The codes were recently introduced in [1] without any specific name. Due to the resemblance between the hashtag sign # and the procedure of the code construction, we call them in this paper HashTag Erasure Codes (HTECs). HTECs provide the lowest data-read and data-transfer, and thus the lowest repair time for an arbitrary sub-packetization level α, where α ≤ rd/re, among all existing MDS codes for distributed storage including MSR codes. The repair process is linear and highly parallel. Additionally, we show that HTECs are the first high-rate MDS codes that reduce the repair bandwidth for more than one failure. Practical implementations of HTECs in Hadoop release 3.0.0-alpha2 demonstrate their great
منابع مشابه
A Non-MDS Erasure Code Scheme for Storage Applications
This paper investigates the use of redundancy and self repairing against node failures indistributed storage systems using a novel non-MDS erasure code. In replication method, accessto one replication node is adequate to reconstruct a lost node, while in MDS erasure codedsystems which are optimal in terms of redundancy-reliability tradeoff, a single node failure isrepaired after recovering the ...
متن کاملEfficient erasure correcting codes
We introduce a simple erasure recovery algorithm for codes derived from cascades of sparse bipartite graphs and analyze the algorithm by analyzing a corresponding discrete-time random process. As a result, we obtain a simple criterion involving the fractions of nodes of different degrees on both sides of the graph which is necessary and sufficient for the decoding process to finish successfully...
متن کاملUpper bounds on the rate of low density stabilizer codes for the quantum erasure channel
Using combinatorial arguments, we determine an upper bound on achievable rates of stabilizer codes used over the quantum erasure channel. This allows us to recover the nocloning bound on the capacity of the quantum erasure channel, R ≤ 1− 2p, for stabilizer codes: we also derive an improved upper bound of the form R ≤ 1 − 2p − D(p) with a function D(p) that stays positive for 0 < p < 1/2 and fo...
متن کاملRethinking erasure codes for cloud file systems: minimizing I/O for recovery and degraded reads
To reduce storage overhead, cloud file systems are transitioning from replication to erasure codes. This process has revealed new dimensions on which to evaluate the performance of different coding schemes: the amount of data used in recovery and when performing degraded reads. We present an algorithm that finds the optimal number of codeword symbols needed for recovery for any XOR-based erasur...
متن کاملLocally Repairable and Locally Regenerating Codes by Parity-Splitting of HashTag Codes
We construct an explicit family of locally repairable and locally regenerating codes whose existence was proven in a recent work by Kamath et al. about codes with local regeneration but no explicit construction was given. This explicit family of codes is based on HashTag codes. HashTag codes are recently defined vector codes with different vector length α (also called a sub-packetization level)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1609.02450 شماره
صفحات -
تاریخ انتشار 2016